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Abstract

We consider visual domains in which a class label specifies the content of an im-
age, and class-irrelevant properties that differentiate instances constitute the style.
We present a domain-independent method that permits the open-ended recom-
bination of style of one image with the content of another. Open ended simply
means that the method generalizes to style and content not present in the training
data. The method starts by constructing a content embedding using an existing
deep metric-learning technique. This trained content encoder is incorporated into
a variational autoencoder (VAE), paired with a to-be-trained style encoder. The
VAE reconstruction loss alone is inadequate to ensure a decomposition of the la-
tent representation into style and content. Our method thus includes an auxiliary
loss, leakage filtering, which ensures that no style information remaining in the
content representation is used for reconstruction and vice versa. We synthesize
novel images by decoding the style representation obtained from one image with
the content representation from another. Using this method for data-set augmen-
tation, we obtain state-of-the-art performance on few-shot learning tasks.

In any domain involving classification, entities are distinguished not only by class label but also
by attributes orthogonal to class label. For example, if faces are classified by identity, within-class
variation is due to lighting, pose, expression, hairstyle; if masterworks of art are classified by the
painter, within-class variation is due to choice of subject matter. Following tradition [40], we refer
to between- and within-class variation as content and style, respectively. What constitutes content
is defined with respect to a task. For example, in a face-recognition task, identity is the content; in
an emotion-recognition task, expression is the content. There has been a wealth of research focused
on decomposing content and style, with the promise that decompositions might provide insight into
a domain or improve classification performance. Decompositions also allow for the synthesis of
novel entities by recombining the content of one entity with the style of another. Recombinations
are interesting as a creative exercise (e.g., transforming the musical composition of one artist in the
style of another) or for data set augmentation.

We propose an approach to content-style decomposition and recombination. We refer to the method
as STOC, for Style Transfer onto Open-Ended Content. Our approach is differentiated from past
work in the following ways. First, STOC can transfer to novel content. In contrast, most previous
work assumes the content classes in testing are the same as those in training. Second, STOC is
general purpose and can be applied to any domain. In contrast, previous work includes approaches
that leverage specific domain knowledge (e.g., human body pose). Third, STOC has an explicit
objective, leakage filtering, designed to isolate content and style. No such explicit objective is found
in most previous work, and as a result, synthesized examples may fail to preserve content as style is
varied and vice versa. Fourth, STOC requires a labeling of entities by content class, but explicit style
labels are not required. In contrast, some previous work assumes supervised training of both style
and content representations.
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Figure 1: Examples of content-style recom-
bination using STOC on the VGG-Face data
set. The middle face in each column com-
bines content of the top face with style of the
bottom face.

Figure 1 shows examples of content-style recombination using STOC on the VGG-Face [27] data
set. In each column, the content of the image in the top row is combined with the style of the image
on the bottom row to synthesize a novel image, shown in the middle row. The images in the top
and bottom rows are of identities (content) held out from the training set. Style is well maintained,
and content is fairly well transferred, at least to the degree that the faces in the middle row are more
similar to top-row than bottom-row faces. The training faces are labeled by identity, but style is
induced by the training procedure.

1 Past research on style transfer

A growing body of work has demonstrated impressive style transfer with models that can translate
images from one specific domain (or content class) to another. Although some of these approaches
require paired samples from both domains [16], several recent methods such as CycleGAN do not
[5, 42, 47]. CycleGAN has been extended to exploit constraints in video [2], yielding impressive
sequences in which the mannerisms and facial movements of one individual are transferred to an-
other. These methods are dependent on having many examples from pairs of content classes, and
a model is custom trained for that pair. Therefore, the models do not attempt to learn an explicit
representation of content or to decompose style and content.

Some domain-to-domain translation models do perform disentangling—of the information in an
entity that is shared between domains and the information that is not shared [10, 15]. Huang et al.
[15] refer to this as content-style decomposition, but the range of content is quite restricted. For
example, a model might be trained to transform cats into lions, but it cannot subsequently be used
to transform cats into, say, panthers. An early proposal for style transfer [20], based on variational
autoencoders, can translate between more than two domains, but the model is unable to handle novel
domains in the test set. Similarly, Structured GANs [6] can only be applied with a fixed set of classes.
An open-ended method such as STOC can process novel content. Many of the above techniques are
described as unsupervised because no cross-domain correspondence between examples is required.
However, from our perspective, the separation of examples by domain is a form of supervision, the
same form we leverage in STOC.

Previous techniques that allow for open-ended content have typically required supervisory signals
for both content and style. That is, labels must be provided for the content class of each training
sample as well as for each of a specified set of style dimensions such as pose and lighting [14, 18, 21,
28, 46]. Analogy constraints of the form x1 : x2 :: y1 : y2 have also been explored as a supervisory
signal for style, specifying that two samples of one class X have the same stylistic variation as two
samples of another class, Y [29].

Methods have been developed that can transfer style to novel content without requiring explicit
style labels but instead rely on domain-specific knowledge. For example, Jetchev & Bergmann
[17] demonstrate the transfer of novel articles of clothing onto novel individuals, but their approach
assumes that style transfer can be applied to only a masked region of the image. Other work has
leveraged constraints inherent in a video sequence, either in a strong manner by extracting pose
from the video [3, 4, 13], or in a weaker fashion by decomposing a video sequence into stationary
(content) and nonstationary (style) components [7, 41]. Neural Style Transfer and related methods
[9, 25, 45] can do open-ended content-style recombination. However, it is limited in that it defines
style as image texture (neural net features with a high degree of spatial correlation), and content as
all other image features. While the method generates impressive results on texture transfer tasks
such as translating a painting from one style to another, it is incapable of e.g., recombining faces
with different pose, as shown in Figure 1.

The closest work we have found to STOC is Mathieu et al. [26], which presents a method for disen-
tangling labeled factors of variation from unlabeled factors. However, their method is significantly
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more complex (requiring a GAN), they demonstrate results only on synthetic or small datasets, and
we show superior performance in one quantitative comparison below.

2 Our Approach

Our approach builds on a Variational Autoencoder (VAE) [19]. We divide the latent code layer of the
VAE into content and style components, as in the SSVAE [20] and other recent work on probabilistic
generative modeling [36, 39]. The content component is produced by a separately trained classifier,
to be described shortly, which we will refer to as the content encoder. The style component uses
the standard VAE encoding of posterior distributions over style vectors, with a prior determined by
the variational loss. It is produced by a separate network called the style encoder. The content and
(sampled) style serve as input to a decoder net, which synthesizes an image containing the two. The
VAE reconstruction loss encourages the style vector to represent any additional input variability that
cannot be attributed to class (content). Content-style recombination can be achieved in the obvious
manner, by synthesizing an output that is based on content of one input and style of another.

We explore four variants of this model. The baseline model, which we refer to as CC for content
classifier, uses a content encoder that is separately trained to be a one-hot classifier using a cross-
entropy loss. This model cannot handle open-ended content because the training procedure requires
data from all potential content classes. Nonetheless, it is useful as a reference point for comparison
to other models. Our second variation uses a content encoder that produces an embedding rather than
a one-hot encoding of class. The content encoder is trained with a deep metric learning objective,
the histogram loss [43], which has been shown to have state-of-the-art performance on few-shot
learning [33]. The embedding is L2 normalized, in accordance with the fact that the histogram loss
uses cosine distance. Because the content encoder produces a distributed representation of content, it
can encode novel classes and is thus in principle adequate for handling open-ended content. We call
this variation of the model CE for content embedding. Both CC and CE use the standard VAE loss,
denoted LVAE . However, this loss does not explicitly disentangle content and style. Impurities—
residual style information in the content representation and vice-versa—are problematic for content-
style recombination. We thus propose two additional model variations that add a decomposition loss
aimed specifically at isolating content and style: predictability minimization (PM), which aims to
orthogonalize representations, and leakage filtering (LF), which aims to filter out residual impurities
and thereby obtain better style transfer.

2.1 Predictability Minimization

Predictability minimization [32] encourages statistical independence between components of a rep-
resentation via a loss that imposes a penalty if one component’s activation can be predicted from the
others. We apply this notion to style and content representations to minimize content predictability
from style. (Because our content encoder is frozen when training the rest of the network, we do
not implement the reverse constraint.) We build a content prediction net, or CPN, which attempts
to predict, for training sample x, the output of the content encoder, zcx, from the output of the style
encoder, {µsx,σsx}. (The style encoder specifies the multivariate Gaussian style posterior obtained
from the VAE.) Predictability minimization involves an adversarial loss:

LPM = LVAE + λmin
θCPN

max
θs

Ex∼X ||zcx − CPN (µsx,σ
s
x)||22,

where θCPN and θs are parameters of the CPN and style encoder, respectively, and λ is a scaling
coefficient. Training proceeds much as in a generative adversarial network [11].

2.2 Leakage Filtering

One way to ensure the success of style-content recombination is to remove all style information from
zcx and to remove all content information from zsx ∼ N (µsx,σ

s
x). Another way is to simply ensure

that the decoder filters out any leakage of content from zsx or leakage of style from zcx in forming the
reconstruction. Leakage filtering (LF) achieves this alternative goal via constraints that guide the
training of the decoder as well as the style encoder.

The constraints of leakage filtering are illustrated in Figure 2. In the left panel, we select a pair of
samples of the same class, {x,x′}, from the complete set P+, and use a decoderD to recombine the
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style of x′ with the content of x to synthesize an image q. Because x and x′ have the same content
class, q should be identical to x′. When they are not, style information may be leaking from zcx. In
the right panel, we select a pair of samples of different classes, {x,y}, from the complete set P−,
and transfer the style of y onto x to create a new image r. Because x and r should share the same
content, the content embeddings zcr and zcx should be similar; because y and r do not share the same
content, zcr and zcy should be dissimilar. These constraints are violated when content information
leaks from the style representation, zsy. Just as the histogram loss was used to determine the content
embedding, we repurpose the loss to quantify the similarity/dissimilarity constraints in the content
embedding. Here, however, the loss is used to adjust only parameters of decoder, θD, and the style
encoder, θs.

The histogram loss is based on two sets of pairwise similarity scores, S+ for pairs that should be
similar and S− for pairs that should be dissimilar, as evaluated by a similarity function s; we use
the cosine similarity. The histogram loss penalizes the overlap in the distributions of S+ and S−.
We populate S+ and S− with similarities of real-to-recombined samples as well as real-to-real, to
ensure that the real-to-recombined similarities match the distributions of real-to-real:

S+ =
{
s(zcx, z

c
x′), s(z

c
x, z

c
q) | {x,x′} ∈ P+,q = D(zcx, z

s
x′)
}
and

S− =
{
s(zcx, z

c
y), s(z

c
x, z

c
r) | {x,y} ∈ P−, r = D(zcx, z

s
y)
}
.

The histogram loss penalizes the overlap between h+(.) and h−(.), the empirical densities formed
from the sets of similarity values in S+ and S−, respectively. The full LF loss is defined as:

LLF = LVAE + λ1

(
−E{x,x′}∈P+,q=D(zcx,z

s
x′ )

log Pr[q | x′]
)

+ λ2

(
Es∼h−

[∫ s

−∞
h+(t)dt

])
,

where λ1 and λ2 are scaling coefficients. Because leakage filtering imposes a cost when the decoder
fails to reconstruct an image, we have found the VAE reconstruction loss to be unnecessary. In the
simulations we report, we replace LVAE with LKL, the KL-divergence term of the VAE loss.

3 Experiments with Fixed Content

The histogram loss is an effective means of capturing content. Training a content embedding on
the small-NORB dataset of toys [23], we predict one of five categories via logistic regression. We
obtain an error rate of 10.0%, as compared to a 13.5% error rate on the same task by Mathieu et al.
[26], who use their own disentangled embedding and a more complex MLP classifier.

We turn to another data set having a fixed set of content classes, the MNIST handwritten digits
[24]. Details of training, validation, and model architecture are presented in the Appendix. A
qualitative comparison of content-style recombination of held-out test samples for CC, CE, PM,
and LF variations is shown in Figure 3. In each case, loss weightings are hand tuned by visually
inspecting recombinations from the validation set. In general, if too much weight is placed on
reconstruction, the model will ignore content, and every row will look identical. If too much weight
is placed on the decomposition loss or KL divergence, then there will be too much uniformity in a
column, with little style transfer. In each grid of digits, the blue top row indicates the input digit
(from the test set) used to specify content. The green leftmost column indicates the input digit
used to specify style. Each gray digit is a sample from the network, with content specified by the
corresponding blue digit, and style specified by the corresponding green digit. To the extent that
content-style recombination is effective, all digits in a row should have the same style, all digits

content encoder

style encoder

decoder

reduce pixel difference

content encoder

style encoder

decoder content encoder

content encoder

increase 
similarity

decrease 
similarity

Figure 2: The logic of the leakage-filtering loss. Left panel: Leakage of style from the content
embedding will cause x′ and q to differ. Right panel: Leakage of content from the style embedding
will cause x and r to have dissimilar content embeddings and y and r to have similar embeddings.
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(a) Content Classifier (CC) (b) Content Embedding (CE)

(c) Predictability Minimization (PM) (d) Leakage Filtering (LF)

Figure 3: Content-style recombination on MNIST of alternative models. Black digits are synthesized
from the style of green digit to the left and content of blue digit above.

in a column should have the same class, and the two columns of each content should be identical
despite variation in the blue digits. CC is superior to CE, but this result is unsurprising: representing
content as a probability distribution over a fixed set of classes is a stronger constraint than a content
embedding. Variant LF appears to be superior to either PM or CE, and surprisingly LF appears to
be as good as, or better than, CC: the inductive bias of leakage filtering allows it to overcome the
limitations of the weaker supervisory signal of the content embedding.

For a quantitative evaluation of the quality of synthetic digits, we investigate performance of a
classifier trained from scratch on synthetic digits and tested on natural digits; we call this procedure
natural evaluation with synthetic training, or NEST. If the synthetic digits do not look natural or have
little stylistic variation, test performance is poor. To synthesize digits, we first select a prototype
content representation: The prototype content embedding for a digit class is the training instance
that minimizes the sum squared Euclidean distance to all other instances of the same class. The
prototype for CC is simply the one-hot vector for the given class. The classifier used for training has
the same architecture as our content encoder, with 10 softmax outputs trained with a cross-entropy
loss. Training is performed on minibatches of 40 samples with randomly-selected content and style
provided by a random instance in (natural digit) training set, likely of a different class.

Figure 4 shows the mean probability of the correct class, a more sensitive metric than classification
accuracy. Both PM and LF outperform the baseline CE, indicating that our losses to isolate content
and style are doing the right thing. LF is clearly superior to PM, and in fact even beats CC, which
is surprising because LF allows for open-ended content whereas CC does not. Because the VAE
provides a prior over style, it is possible to simply sample style from the prior, rather than transferring
it from another example. We repeated the NEST simulation using styles drawn from the prior and
obtained similar results. Having shown the superiority of LF on a fixed set of classes, we next
investigate performance of LF with open-ended content.

CC CE PM LF
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p<0.0001 Figure 4: Naturally Evaluated, Synthetically
Trained (NEST) results on MNIST. Mean prob-
ability of correct class is shown, with error bars
indicating±1 standard error of the mean. p values
are from two-tailed Bonferroni-corrected t-tests
with 9999 degrees of freedom. All differences
are highly reliable. CC = Content Classifier, CE
= Content Embedding, PM = Predictability Mini-
mization, LF = Leakage Filtering
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Figure 5: (left) Examples of content-style recom-
bination using the VGG-Face dataset. The images
in the matrix are formed by recombining the con-
tent/identity of the image in the top row with the
style of the image in the left column. The top row
contains samples from held-out identities. The
left column contains other samples from the data
set. (above) Examples of content-style recombi-
nation using the Omniglot dataset. The blue char-
acters in the top row are test samples used to infer
content, and the green characters are training sam-
ples used to infer style.

4 Experiments with Open-Ended Content

We experiment with LF on two many-class data sets: Omniglot [22] and VGG Face [27]. Details
of data sets and split into training, validation, and test is in the Appendix. To improve the quality
of our generated images in these more complex domains, we incorporate a WGAN-GP [12] adver-
sarial loss. This additional objective requires another scaling hyperparameter for the W-GAN loss,
but training is otherwise identical to the MNIST procedure. We use a ResNet architecture for the
content-style encoders, the decoder, and the critic network of the WGAN-GP. For the VGG-Face
data set, we include U-Net [31] skip connections from both the style and content encoders to the
decoder. Additional details can be found in the Appendix.

4.1 Qualitative Results
Figure 5 (top right) shows Omniglot characters with recombined content and style. Content is in-
ferred from the blue character at the top of the column, a novel class from the test set. Style is
inferred from the green character on the left, drawn from the training set. The content classes are
repeated in order to determine how successful the model is at ignoring stylistic variation from the
sample used to provide content. The three same-class digits in a given row are not always identical,
but there is certainly more variation in a column (varying style) than there is in a row triplet (varying
samples providing the content). All characters in a row appear to share stylistic features: e.g., they
are very small, have wavy lines, are bold, or are boxy in shape.

Figure 5 (left) shows examples of VGG Faces with recombined content (the face in the top row)
and style (the face in the left column). Looking across a row, the model preserves many aspects
of style, including pose, lighting conditions, and facial expression. In the last row, even glasses
are considered a stylistic feature, surprising given the strong correlation of glasses presence across
instance of an individual. Looking down a column, many identity-related features are preserved,
including nose shape, eyebrow shape, and facial structures like strong cheekbones.

4.2 Application to Data Augmentation
Next, we explore using STOC for data augmentation and evaluate on few-shot learning tasks. Data
augmentation is the process of synthesizing variations of a training sample by transformations
known to preserve some attribute of interest to a task (e.g., object class), in hopes that a predic-
tive model will become invariant to the introduced variations. Domain-specific techniques are very
common, especially in perceptual domains, e.g., image translation and flipping. Style transfer using
STOC provides a domain-agnostic method.
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Model Name Test Accuracy
Matching Nets [44] 0.938

Prototypical Networks [38] 0.960
Matching Nets (DAGAN replication) [1] 0.969

Matching Nets + DAGAN Augmentation [1] 0.974
Conv. ARC [35] 0.975

Histogram Embedding (our implementation) [43] 0.974
STOC (ours) 0.975

Table 1: Average query accuracy for
the one-shot learning task with the Om-
niglot data set, with k = 1 samples per
class in the support set and n = 20
classes per episode.

Recently, other researchers have used machine learning to augment data. Several methods make
use of generative adversarial nets to refine images produced by CAD programs [34, 37], but these
obviously rely on significant domain knowledge. DeVries & Taylor [8] generate new samples of a
class by interpolating the hidden representations of labeled samples of that same class. Zhu et al.
[48] generates augmented faces for emotion recognition. Emotion is defined as the content class and
a CycleGAN-like architecture is used to translate from one emotional expression to another. This
approach works only for a fixed set of known classes and therefore cannot be directly compared
to STOC. Two papers [1, 30] introduce methods for generating new samples that share a class
with a given input sample, and are shown to work with novel classes. Only Antoniou et al. [1]
demonstrates performance on a data-augmentation task, so we choose this paper as our primary
point of comparison.

Because data augmentation should have the greatest effect in data-sparse domains, we evaluate STOC
augmentation on few-shot learning, where the goal is to obtain accurate classification based on a
small number of samples. Our evaluation procedure follows Scott et al. [33]. The data set is divided
by content-class into source (S) and target (T ) domains. S is split by class into a training and
validation set, used to train STOC. We use T for evaluation. Within T , each class has N samples,
which are split into k support samples (which together make up Ts), and (N − k) query samples
(Tq). Testing proceeds in episodes, where a subset of n classes is drawn from T for testing. We
then generate the augmented set (Ta) using the content of Ts, and style drawn from S. A classifier
is then trained using Tsa ≡ {Ts, Ta}. Performance is reported on the classification accuracy of Tq .
We evaluate two different methodologies. First, we compare our method to other state-of-the-art
one-shot learning methods on the Omniglot dataset. Second, we consider the case of training a new
classifier from scratch on only Tsa.

One-Shot Learning with Omniglot. We investigate the common one-shot Omniglot task, where the
number of classes per episode (n) is 20, and the number of examples per class (k) is 1. To generate
Ta, we synthesize m stylistic variations of each member of Ts. We experiment with two settings,
m = 0 (no augmentation) and m = 40. Also, we found that limiting the variability introduced by
style transfer to be important, so instead of replacing the style of the samples of the support set with
the style of a training example, we linearly interpolate between them.

Scott et al. [33] demonstrated that the histogram-loss embedding achieves state-of-the-art perfor-
mance on this task. We use the histogram embedding of the content-encoder network that is trained
for STOC, ensuring that there is no performance difference between the content embedding used to
train the style transfer model and the embedding used for few-shot learning. To evaluate an episode,
we first embed the Tsa set using the content encoder. For each query sample, we compute its content
embedding. We then compute the L2 distances between the query embedding and each embedding
in Tsa. For each embedding in Tsa, we assign a weight to determine the contribution strength of that
sample to the overall decision. Each real support sample is assigned a weight ws, and each of the
m augmented samples is assigned a weight wa = (1 − ws)/m. The probability distribution over
classes is computed via a weighted softmax on the squared distance between the query sample and
the samples in Tsa.

For each episode, we record the average classification accuracy for all the query samples. We run
400 episodes, each with different random subsets of test classes, and report average accuracy across
the replications. Table 1 shows the results for our model with and without data augmentation, along
with reported results from the literature. For this task, we find that the baseline histogram perfor-
mance is already very good. Although the improvement from data augmentation is small, it brings
the histogram embedding performance up to the level of Conv-ARC [35], which is a complex, ar-
ticulated, recurrent architecture with attention that performs explicit comparisons between samples.
DAGAN [1] shows a bigger improvement, but it makes use of an auxiliary sample-selection network,
the details of which are not explained.
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Standard Classifiers with Omniglot and VGG-Face. We also trained standard classifiers from
scratch on Tsa. The classifiers are convolutional nets with 4 strided convolutional layers, followed
by a ReLU activation, batch norm, and dropout with a rate of 0.5. Each convolutional layer has
a kernel size of 5 and 64 filters. To train the nets, we split Ts into training (75%) and validation
(25%) sets, and use the validation set to determine the number of epochs to train for. Minibatches
are composed of some mixture of real and augmented samples, and we used the validation set to
determine the ratio. We generate new Ta augmentations for every minibatch. For omniglot, we also
experiment with adding “standard” data augmentations (rotations, shifts, and dilations; see appendix
for details). For VGG-Face, we do not add augmentations because the images have been already
been carefully pre-processed to normalize face rotation, shift, and zoom. Table 2 shows the results
on the test samples for both Omniglot and VGG-Face data sets. For Omniglot, we report results
on the whole set of 1299 test classes, varying k, the number of samples per class in the support
set. To compare our results with DAGAN [1], we select a random subset of the 212 Omniglot
classes, which is the size of the DAGAN test set, and we use the same test set size as DAGAN for
VGG Face. For omniglot, standard augmentation improves accuracy over baseline in every case,
and the additional augmentation from STOC further improves performance. Likewise, for VGG-
Face, STOC augmentations improve performance. We demonstrate that STOC performance on data
augmentation is about on par with DAGAN, even though DAGAN was specifically designed for
this task. STOC and DAGAN have different goals, and it is valuable to study both approaches for
data augmentation. The fact that both models perform similarly might point to a limitation to the
potential benefit of synthetic data for training.

STOC [1]
Test Accuracy Test Accuracy

Data set n k Baseline Std. Aug. Std. Aug. + STOC Std. Aug. Std. Aug. + DAGAN

Omniglot 1299
5 0.261 0.560 0.631
10 0.426 0.679 0.688
15 0.543 0.696 0.703

Omniglot 212
5 0.435 0.683 0.807 0.690 0.821
10 0.571 0.833 0.857 0.794 0.862
15 0.643 0.821 0.879 0.820 0.874

VGG Face 497
5 0.087 0.272 0.045 0.126
15 0.263 0.448 0.393 0.429
25 0.371 0.504 0.580 0.585

Table 2: Results for training standard classifiers on un-augmented and on augmented data. The
columns, from left to right: the tested data set, the number of classes in the training/test data sets
(n), the number of samples per class in the support set (k), the baseline (un-augmented) test accuracy,
the accuracy of a model with standard data augmentation, and the accuracy of a model with both
standard data augmentation and STOC augmentation. We have also listed the test accuracy from
Antoniou et al. [1], where appropriate.

5 Conclusion

STOC is effective in transferring style onto open-ended content—content that is novel with respect
to the training data. This is a challenging task: content class boundaries cannot be determined pre-
cisely in a setting where the number of potential classes is unbounded. As a result, it is easy for
some style information to seep into a content representation. We introduced the leakage-filtering
loss, a novel approach to isolating content and style. Traditionally, researchers have focused on dis-
entangling style and content: inducing representations that separate style and content into different
vector components. Given the difficulty of this challenge with only content labels and no explicit la-
bels or domain knowledge pertaining to style, we instead focus on ensuring that the decoder, which
combines style and content to reconstruct images, does not use any residual style information in the
content representation or any residual content information in the style representation. Our results
yield impressive visual quality and achieve significant boosts in performance when STOC is used
for augmenting data sets to train a de novo classifier. We also explored data augmentation for few-
shot learning and achieved performance that matches state of the art, a complex highly articulated
and computation intensive model. We suspect that beating state-of-the-art on few-shot learning is
becoming increasingly difficult, given that state-of-the-art is now bumping against the ceiling on
performance in the paradigm that is typically used for evaluation.
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